

6.1820/MAS.453: Mobile and Sensor Computing aka IoT Systems

https://6mobile.github.io/

Lecture 12: Attacks on Acoustic Sensing

Some slides adapted from Nirupam Roy (UMD College Park)

Course Staff	Announcements
<u>Lecturers</u> Fadel Adib (<u>fadel@mit.edu</u>) Tara Boroushaki (<u>tarab@mit.edu</u>)	1- Project Proposals due April 1st2- Lab 3 due today
TAs Waleed Akbar (<u>wakbar@mit.edu</u>) Jack Rademacher (<u>jradema@mit.edu</u>)	3- PSet 2 due April 10

Project Timeline

1. Feedback is to help you excel on the final project

Feedback to refine your ideas

- 2. Project is biggest chunk of class (40%) by comparison, labs combined are 25%
- 3. Started learning the challenge in an IoT system: motivation, idea, time, \$

What are we learning today?

IoT Security Cyber-Physical Security and Acoustic Attacks

- 1- Hacking different IoT sensors:
 - microphones in smart home devices
 - accelerometers in fitbit
 - localization in drones
 - controller of a pace maker
- 2- How can you send inaudible voice commands to a microphone?

Mobile Security Inaudible Voice Commands

Light Commands Hacking using Laser

Analog Sensor Security Acoustic Attacks on MEMS Accelerometers

Acoustic "pressure" waves

Drone Security Spoofing GPS Signals

Pacemaker Security Wireless Control of Pacemaker

BackDoor: Making Microphones Hear Inaudible Sounds

Microphones are everywhere

Microphones are everywhere

Microphones record audible sounds

Inaudible, but recordable!

Inaudible, but recordable!

Works with unmodified devices

It's not "near-ultrasound"

Exploiting fundamental nonlinearity

What can we do with it?

Application: Acoustic jammer

Application: Acoustic communication

Threat: Acoustic DOS attack

Threat: Acoustic DOS attack

Threat: Acoustic DOS attack

Talk outline

- 1 Microphone Overview
- 2 System Design
- (3) Challenges
- (4) Evaluation

Talk outline

- 1 Microphone Overview
- 2 System Design
- (3) Challenges
- (4) Evaluation

Microphone working principle

Talk outline

- 1 Microphone Overview
- 2 System Design
- (3) Challenges
- (4) Evaluation

Talk outline

- 1 Microphone Overview
- (2) System Design
- (3) Challenges
- (4) Evaluation

Not sending a single "tone" (sine wave), but sending a command.

How can we send this command?

Discuss in pairs for 3 min

Primer on Modulation

E.g., We send WiFi at 2.4GHz or 5GHz What does this mean and Why?

Primer on Modulation

Why is Modulation useful?

- 1. Interference, Technology Co-existence
- 2. Spectrum Access (Legal)
- 3. Antenna size (wavelength/4)

Not sending a single "tone" (sine wave), but sending a command/message.

How can we send this command message m(t)? $m(t) \times sin(2\pi ft)$

Ultrasonic speaker

$$S_{out,AM}^2 = A_2 \{aSin(\omega_m t).Sin(\omega_c t)\}^2$$

 $= -A_2 \frac{a^2}{4} \{Cos(\omega_c t - \omega_m t) - Cos(\omega_c t + \omega_m t)\}^2$
 $= -A_2 \frac{a^2}{4} Cos(2\omega_m t) + (terms \ with \ frequencies$
 $above \ \omega_c \ and \ DC)$

Problem: speaker has non-linearities => Audible sound

Frequency modulation

$$S_{FM} = \sin(\omega_c t + \beta \sin(\omega_m t))$$

Ultrasonic speaker

Frequency modulation

$$S_{FM} = \sin(\omega_c t + \beta \sin(\omega_m t))$$

Ultrasonic speaker

Talk outline

- 1 Microphone Overview
- (2) System Design
- (3) Challenges
- 4 Evaluation

Hardware generalizability

Implementation

Communication prototype

Jammer prototype

Communication performance

More power can increase the distance

BackDoor jammer

What did we cover today?

IoT Security

Cyber-Physical Security and Acoustic Attacks

- 1- Hacking different IoT sensors:
 - microphones in smart home devices
 - accelerometers in fitbit
 - localization in drones
 - control a pace maker
- 2- How can you send inaudible voice commands to a microphone?
 - 1- Project Proposals due April 1st
 - 2- Lab 3 due today
 - 3- PSet 2 due April 10

