Welcome!

6.1820/MAS.453: Mobile and Sensor Computing aka IoT Systems

https://6mobile.github.io/

Lecture 3: Indoor Localization

Course Staff	Announcements
<u>Lecturers</u>	1- Did you join Slack & introduce yourself?
Fadel Adib (<u>fadel@mit.edu</u>)	2- Lab 0 due Thursday (i.e., checkoff in OH within 1wk)
Tara Boroushaki (<u>tarab@mit.edu</u>)	3- Lab 1 & PSet 1 out
TAs	4- Macs distributed today for those who asked
Waleed Akbar (<u>wakbar@mit.edu</u>)	5- OH posted
lack Rademacher (<u>jradema@mit.edu</u>)	6- #teamformation channel

L.

This Week in IoT

Creating smart buildings with privacy-first sensors

Butlr, founded by former Media Lab researchers, uses insights from thermal sensors to make buildings safe and efficient.

Zach Winn | MIT News February 11, 2025

Practical Indoor Wireless Positioning Systems

- RADAR [Infocom 2000]
- Cricket [2000]

Paper 1: RADAR [INFOCOM '00]

Why are we reading this paper?

- First paper to propose using wireless LANs for indoor location estimation
- Measurement-based / analysis paper (not a system)
- Key pioneering idea: fingerprinting / pattern matching

- Database
- Different orientations

Signal strength at the base stations as user walks

Distance along walk (meters)

Approach

- Summarize signal strength samples at base stations
- Metric for determining best match
- Determine "best match"

Approach

- Summarize signal strength samples at base stations
 - Mean signal strength over a time window
- Determine "best match"
 - Empirical method
 - Signal propagation model
- Metric for determining best match
 - Nearest neighbor in signal space, i.e., Euclidean distance between ss' and ss vectors

Evaluation

- Critique the evaluation
- Is it reasonable to evaluate the accuracy on 1 out of 70 points, treating the other 69 as "known"?
- What happens when they have only 40 points in the signal database (see paper)?

Averaging multiple nearest neighbors

- 25th - 50th

Why does the graph look like this?

- 1. On the right, too many far-away neighbors
- 2. Would weighted averaging work better?

Paper 2: Cricket [MobiCom '00]

A general-purpose indoor location system for mobile and sensor computing applications

Cricket Design Goals

- Must work well <u>indoors</u>
- Must <u>scale</u> to large numbers of devices
- Should not violate user location <u>privacy</u> location-support rather than track
- Must be easy to deploy and administer
- Should have <u>low energy</u> consumption

Cricket Architecture

Passive listeners + active beacons scales well, helps preserve user privacy Decentralized, self-configuring network of autonomous beacons

SPACE = NE43-510 COORD = (146 272 0)

Obtain linear distance estimates
Pick nearest to infer "space"
Solve for device's (x, y, z)
Determine θ w.r.t. each beacon and deduce orientation vector

Determining Distance

•A beacon transmits an RF and an ultrasonic signal simultaneously _RF carries location data, ultrasound is a narrow pulse

•The listener measures the time gap between the receipt of RF and ultrasonic (US) signals -Velocity of US << velocity of RF

Multiple Beacons Cause Complications

 Beacon transmissions are uncoordinated
 Ultrasonic pulses reflect off walls
 These make the correlation problem hard and can lead to incorrect distance estimates
 Solution: Beacon interference avoidance + listener interference detection

Choosing the bitrate of transmission

- How long should the packet be?
 - tau: 2 x ultra-sound longest TOF
 - packet size: S bits
 - bitrate < S/tau
 - "Long radio"
- Other proposal for dealing with interference?

Localization Schemes

- How to localize?
 - majority (pick beacon with highest freq of occurrence)
 - minmean (pick beacon with smallest mean distance)
 - minmode (pick beacon with smallest mode distance)

- Other proposals?
- Intrinsic Challenges?
- Extending to orientation?

Objectives of the Three Lectures Series

Learn the fundamentals, applications, and implications of wireless localization and sensing

- 1. What are the unifying principles of wireless positioning?
- 2. How do practical systems like GPS, WiFi portioning, Bluetooth positioning work?
- 3. What is wireless (aka WiFi) sensing? **next lecture**
- 4. What are the industry opportunities and societal implications of wireless sensing (today and in the near+far future)?

1) Lab 0 Due Thursday at midnight (i.e., checkoff in OH in 1wk)

TODO: 2) Lab 1 and Pset 1 out

3) Survey for feedback on class soon