

6.1820/MAS.453: Mobile and Sensor Computing aka IoT Systems

https://6mobile.github.io/

Lecture 13: Mobile & Augmented/Mixed Reality

Some slides adapted from Sruti Srinidhi (CMU)

Course Staff	Announcements
Lecturers Fadel Adib (<u>fadel@mit.edu</u>) Tara Boroushaki (<u>tarab@mit.edu</u>) <u>TAs</u> Waleed Akbar (<u>wakbar@mit.edu</u>)	1- Project Proposals due April 1st 2- Lab 4 is out today; due April 4 3- PSet 2 due April 10

What are we learning today?

Mobile & Augmented/Mixed Reality

- 1- How can augmented reality headsets enable efficient and accurate RFID tag localization?
- 2- How does a human-in-the-loop design improve RFID sensing and localization?
- 3- What unexpected insights do user studies reveal?
- 4- How can multi-modal LLMs and XR be combined to create new applications?
- 5- What are the limitations of multi-modal LLMs in cognitive assistance for humans?

Battery-less 3 cent Radio Frequency IDentification (RFID) Tags

Signa, kinetics

IT BA

HI

ROE

RFID tagged items inside boxes

DIS

RICI

11

DISSIC

stiuorio.iniM

2

1 OLINILI

YAMI 亚米

THE HILL

11

BALEA

RFID tagged items inside boxes

DIS

RICI

11

DISSIE

stinoniO-iniM

3

6

B CLINNEL

YAMI 亚米

11

BALEA

Applications

Applications

RF-AR

- First augmented reality headset that enables efficient and accurate localization of RFID Tags.
- It introduces "human-in-the-loop" design for sensing and localization RFIDs through RF-based Dynamic user interface.
- A user study of 20 people: It enables users to quickly find items with <10 cm accuracy across line-of-sight, non-line-ofsight, or fully occluded settings.

How does RF-AR work?

Designing an RFID reader antenna that conforms to AR headsets

RFID reader antennas come in many shapes and forms

Designing an RFID reader antenna that conforms to an AR headset is challenging

- Wide bandwidth
 for accurate localization
- Light weight and flexible
 for easy mounting
- Matches visor's shape
 - for not blocking cameras

J-RFID'19, IEEE RFID TA'13, IEEE MTT'09

Designing an RFID reader antenna that conforms to AR headsets

How can we locate the antenna as the user walks in the environment?

GLIANLI

Real World

Virtual 3D map using Cameras on AR headset

Mini Circuit

100

14

Irack Headset location through visual and inertial odometry

Real World

Virtual 3D map using Cameras on AR headset

Track Headset location through visual and inertial odometry

Real World

Virtual 3D map using Cameras on AR headset

The user has to move back and forth, leading to inefficiency

Real World

Virtual 3D map using Cameras on AR headset

How can RF-AR help the user to reduce task time?

Idea: Exploit the Synergies between AR and RFID Localization

AR can bring the human in the loop for <u>efficient</u> RFID localization

RF-AR improves efficiency by projecting a Dynamic RF-based User Interface

Idea: Exploit the Synergies between AR and RF sensing

Color Cues

Idea: Exploit the Synergies between AR and RF sensing

Color Cues

Users might stop walking in the environment when they see the blue color.

Idea: Exploit the Synergies between AR and RF sensing

Estimated Region Cues

Walking on a straight line reduces the accuracy of RFID localization

Why walking on a straight line toward tag reduces the localization accuracy? Dilution of Precision (DoP)

Large Dilution of Precision

Why walking on a straight line toward tag reduces the localization accuracy?

Dilution of Precision (DoP)

Small diversity in measurement angles

Large Dilution of Precision

Small Dilution of Precision $y_2 - \overline{y_p}$ $z_2 - z_p$ A = R_2 R_{2} R_n $Q = (A^T A)$ all error Large error $DOP = \sqrt{tr(Q)}$ alization in localization

Large diversity in

measurement angles

RF-AR needs to abstract away this technical information and guide the user

How does RF-AR guide the user? Guiding Arrows

How does RF-AR calculate the optimum trajectory and direction?

Optimum trajectory should result in high SNR measurements

We are limited to the antenna's Field of View

Optimum trajectory should result in high SNR measurements

The optimum measurement locations should reduce the DoP and time to convergence

Optimum trajectory should improve DoP

How does RF-AR seamlessly guide the user? Directing Arrows

Implementation

Edge Server (Ubuntu Machine):

- Receives information from Pi and Hololens
- Calculates SAR and R-SAR
- Sends commands to Hololens

HoloLens:

Deployed our own App
 Self-Tracking, Hand-Tracking, Visualization

Wideband Antenna

on flexible (kapton) substrate with 0.12 mm thickness 200 MHz BW, 920 MHz CF

BladeRF 2.0 Software Defined Radio

Raspberry Pi

How accurately RF-AR locates RFID tags?

80 trials of user study on 20 people (14 males & 6 females, 22-34 years old) Hid RFID tags in the environment and randomized order of UI

Different UI result in similar RFID tag localization accuracy

How much RF-AR improves efficiency and reliability?

Find the item within 5 minutes and error < 25 cm

IEEE ISMAR 2024 GREATER SEATTLE AREA XaiR An XR Platform that Integrates Large Language **Models with the Physical World** Sruti Srinidhi, Edward Lu, Anthony Rowe

Carnegie Mellon University

EEE 🚯

🕀 BOSCH

Cognitive Assistants Should...

(*******

1. Understand the world

But...

3. Respond to the world

XR Headsets do not have the resources to run LLMs natively

LLMs struggle to understand the user's 3D environment

But Different LLMs are Trained for Different Purposes

But Different LLMs are Trained for Different Purposes

But Different LLMs are Trained for Different Purposes

LLMs currently do not provide XR Output

LLMs currently do not provide XR Output

XaiR Architecture

Example Application: Instruction Following Assistant

An assistant that can:

- 1. Generate Instructions based on an expert performing the task
- 1. Provide feedback to a user so they can follow the generated instructions

Step 1: Instruction Generation

Step 2: Assistant for Instruction Following

Instruction-guiding Text displayed in AR

=== Message Received From Server === 1. Hold the multimeter in your hand. Current instruction state: False. The multimeter is on the table, not in your hand.

289 TRUE MILLIN

=== Message Received From Server === 2. Take the red cable and connect it to the right most port of the multimeter Current instruction state: False. The red cable has not been connected to the rightmost port of the multimeter.

Speed: x2

How do we Evaluate Such a System?

Method: The LLM-based cognitive assistant and a human expert assist users through the same task

Previous image at time t = 4	Previous image at time t = -3 (a) (b) (c) (c)<	
Current Image	S Draw her	¥
	Update Center Image	
User Question:		
Current Instruction: Connect the red cable to the right most po	rt of the multimeter	1.
art typing below and then press Enter to send the output.		
Response:	Is the instruction done	
Cable appears to be connected.	is instruction done C True False	

 Each user did 2 basic and 2 advanced tasks (one of each with the LLM-based assistant and one with the human expert)

Not Surprising : LLMs are not as good as Humans!

	LLM-Backend Assistant	Human Assistant
Accuracy (%)	90	100
Queries to Assistant per Instruction	9.39	3.2
Time per Instruction (sec)	38.02	27.86
Time to complete Task (sec)	197.32	151.15
NASA TLX Raw Score (out of 100)	30.50	17.23

LLMs are not as accurate as humans

But not far off: LLM Assistant made only 3 errors out of 30

	LLM-Backend Assistant	Human Assistant
Accuracy (%)	90	100
Queries to Assistant per Instruction	9.39	3.2
Time per Instruction (sec)	38.02	27.86
Time to complete Task (sec)	197.32	151.15
NASA TLX Raw Score (out of 100)	30.50	17.23

The LLM makes significantly more queries for each instruction

It takes longer to recognize the user's action

-				
		LLM-Backend Assistant	Human Assistant	
	Accuracy (%)	90	100	
	Queries to Assistant per Instruction	9.39	3.2	
	Time per Instruction (sec)	38.02	27.86	
Г	ime to complete Task (sec)	197.32	151.15	
	NASA TLX Raw Score (out of 100)	30.50	17.23	

The human assistant takes longer to respond to each query when compared to the LLM

	LLM-Backend Assistant	Human Assistant
Accuracy (%)	90	100
Queries to Assistant per Instruction	9.39	3.2
Time per Instruction (sec)	38.02	27.86
Time to Respond to Each Query (sec)	4.04	8.71
Time to complete Task (sec)	197.32	151.15
NASA TLX Raw Score (out of 100)	30.50	17.23

The task load index is almost double for the LLM-based system

The mostly stems from needing multiple queries to complete a step

	LLM-Backend Assistant	Human Assistant
Accuracy (%)	90	100
Queries to Assistant per Instruction	9.39	3.2
Time per Instruction (sec)	38.02	27.86
Time to complete Task (sec)	197.32	151.15
NASA TLX Raw Score (out of 100)	30.50	17.23

XaiR:

An XR Platform that Integrates Large Language Models with the Physical World

- A platform that integrates the physical world data captured through XR devices with multimodal LLMs
- **Comparative study** on the effectiveness of MLLMs in supporting physical tasks against human benchmarks
- Open-sourced implementation: https://srutisrinidh

What did we cover today?

Mobile & Augmented/Mixed Reality

1- How can augmented reality headsets enable efficient and accurate RFID tag localization?

2- How does a human-in-the-loop design improve RFID sensing and localization?

3- What unexpected insights do user studies reveal?

4- How can multi-modal LLMs and XR be combined to create new applications?

5- What are the limitations of multi-modal LLMs in cognitive assistance for humans?

1- Project Proposals due April 1st

TODO:

- 2- Lab 4 is out today; due April 4
- 3- PSet 2 due April 10