

6.1820/MAS.453: Mobile and Sensor Computing aka IoT Systems

https://6mobile.github.io/ Lecture 12: Agriculture IoT

Some slides adapted from Deepak Vasisht (UIUC) and Saad Afzal (MIT)

Course Staff	Announcements
<u>Lecturers</u> Fadel Adib (<u>fadel@mit.edu</u>) Tara Boroushaki (<u>tarab@mit.edu</u>)	1- Project Proposals due today 2- Lab 4 due next week, April 8
<u>TAs</u> Waleed Akbar (<u>wakbar@mit.edu</u>) Jack Rademacher (jradema@mit.edu)	3- PSet 2 due April 10

What are we learning today?

Agriculture IoT

- Aerial-based Connectivity (Loon, Aquila)
- Challenges in Agriculture IoT:
 - Internet Connectivity
 - Limited Sensor Placement
 - Power Availability
- How can you use wireless signals for produce monitoring and fruit sensing?

Aerial-based Connectivity for Remote Areas

Google X's Project Loon

Facebook's Project Aquila

Others including Microsoft, Boeing, etc.

<u>Goal:</u> Bringing Connectivity to the Remote and Disconnected Areas of the Planet

<u>Goal:</u> Bringing Connectivity to the Remote and Disconnected Areas of the Planet

• Bring connectivity to rural areas

Disaster Relief

Aquila was discontinued in 2018; Loon was discontinued in 2021

Challenges

- Power: Constrained
 Need to last for a long time
- Control: Flight paths
 - Minimal power consumption
- Communications: Long-range links
- Data Rates

Challenges

- Power: Constrained
 - Need to last for a long time
- Control: Flight paths
 - Minimal power consumption

Solar Energy

StratosphereDrone paths

Communications: Long-range links

Low Frequencies

Data Rates

- 10s MHz bandwidth Millimeter waves

Common Opportunities: Atmospheric Conditions and Predictability

- Leverage Stratosphere in Loon/ Aquila
 - No "problematic" weather conditions (rain, winds, etc.)
 - Different stratospheric layers have different predictable currents
 - How do you move vertically?

Swarm Takes LoRa Sky-High > The satellite company has adapted the popular IoT technology for use in its constellation

BY NICHAEL KOZIOL 23 MAR 2021 4 MIN READ

Each of Swarm's satellites is the size of a sandwich, but still has everything it needs to relay low-power signals from remote IoT networks to another point on the planet. PHOTO: SWARM

SpaceX's Starlink

Satellite connectivity already exists (Iridium). Why/how are these constellations better/different?

FarmBeats: An IoT System for Data-Driven Agriculture

NSDI 2017

Why Agriculture?

Agricultural output needs to double by 2050 to meet the demands - United Nations¹

1: United Nations Second Committee (Economic & Financial),

Why Agriculture?

Agricultural output needs to double by 2050 to meet the demands - United Nations¹

But...

- Water levels are receding
- Arable land is shrinking
- Environment is being degraded

1: United Nations Second Committee (Economic & Financial),

Why Agriculture?

Agricultural output needs to double by 2050 to meet the demands - United Nations

Solution: Data-Driven Agriculture

Traditional vs Data-driven approach

Ag researchers have shown that it:

- Reduces waste
- Increases productivity
- Ensures sustainability

According to USDA, high cost of manual data collection prevents farmers from using data-driven agriculture

IoT System for Agriculture

Problems with this architecture?

Microsoft Azure

Problem 1: No Internet Connectivity

• Most farms don't have any internet coverage

• Even if connectivity exists, weather related outages can disable networks for weeks

Problem 2: No Power on the Farm

• Farms do not have direct power sources

• Solar power is highly prone to weather variability

Problem 3: Limited Resources

- Need to work with sparse sensor deployments
 - Physical constraints due to farming practices
 - Too expensive to deploy and maintain

How can one design an IoT system in challenging resource-constrained environments?

Rest of this lecture

• FarmBeats: An end-to-end IoT system that enables seamless data collection for agriculture

Rest of this lecture

- FarmBeats: An end-to-end IoT system that enables seamless data collection for agriculture
- Solves three key challenges:
 - Internet Connectivity
 - Power Availability
 - Limited Sensor Placement
- Deployed in two farms in NY and WA for over six months

Challenge: Internet Connectivity

Challenge: Internet Connectivity

Microsoft Azure

Cloud

Sensors

• Few miles away

Obstructed by crops, canopies, etc

Approach: Use TV White Spaces

- Can provide long-range connectivity (10 miles)
- Can travel through crops and canopies, because of low frequencies
- Large chunks are available in rural areas=> can support large bandwidth

Idea: Use TV White Spaces

Approach: Compute Locally and Send Summaries

- PC on the farm delivers time-sensitive services locally
- Combines all the sensor data into summaries
- 2-3 orders of magnitude smaller than raw data
- Cloud delivers long-term analytics and cross-farm analytics

FarmBeats Design

Base Station

In this lecture

- FarmBeats: An end-to-end IoT system that enables seamless data collection for agriculture
- Solves three key challenges:
 ✓Internet Connectivity
 - Limited Sensor Placement
 - Power Availability
- Deployed in two farms in NY and WA for over six months

Challenge: Limited Resources

- Need to work with sparse sensor deployments
 - Physical constraints due to farming practices
 - Too expensive to deploy and maintain
- How do we get coverage with a sparse sensor deployment?

Approach: Use Drones to Enhance Spatial Coverage

- Drones are cheap and automatic
- Can cover large areas quickly
- Can collect visual data

Combine visual data from the drones with the sensor data from the farm

Idea: Use Drones to Enhance Spatial Coverage

Formulate as a Learning Problem

Panoramic Overview

Model Insights

- Spatial Smoothness: Areas close to each other have similar sensor values
- Visual Smoothness: Areas that look similar have similar sensor values values

Model: Gaussian Processes

Using Sparse Sensor Data

FarmBeats can use drones to expand the sparse sensor data and create summaries for the farm

In this talk

- FarmBeats: An end-to-end IoT system that enables seamless data collection for agriculture
- Solves three key challenges:
 ✓ Internet Connectivity
 ✓ Limited Sensor Placement
 Power Availability
- Deployed in two farms in NY and WA for over six months

Challenge: Power Availability is Variable

Farm

Challenge: Power Availability is Variable

- Solar powered battery saw up to 30% downtime in cloudy months
- Miss important data like flood monitoring

How do we deal with weather-based power variability?

Approach: Weather is Predictable

- Use weather forecasts to predict solar energy output
- Ration the load to fit within power budget

Idea: Weather is Predictable

•• γ : Duty Cycle ratio, T_{on} : On time in each cycle, T_{off} : Off time

•
$$\gamma = \frac{T_{on}}{T_{off}}$$

- Constraints:
 - Power Neutrality: $\gamma P \leq C$
 - Minimum Transfer Time: $T_{on} \ge T_{connect} + T_{transfer}$

Solution: Weather is predictable

base station, with minimum latency

In this lecture

- FarmBeats: An end-to-end IoT system that enables seamless data collection for agriculture
- Solves three key challenges:

 ✓ Internet Connectivity
 ✓ Limited Sensor Placement
 ✓ Power Availability
- Deployed in two farms in NY and WA for over six months

Deployment

- Six months deployment in two farms: Upstate NY (Essex), WA (Carnation)
- The farm sizes were 100 acres and 5 acres respectively
- Sensors:
 - DJI Drones
 - Particle Photons with Moisture, Temperature, pH Sensors
 - IP Cameras to capture IR imagery as well as monitoring
- Cloud Components: Azure Storage and IoT Suite

Deployment Statistics

- Used 10 sensor types, 3 camera types and 3 drone versions
- Deployed >100 sensors and ~10 cameras
- Collected >10 million sensor measurements, >0.5 million images, 100 drone surveys
- Resilient to week long outage from a thunderstorm

FarmBeats: Usage

Farm

Example: Panorama

Water puddle

Cow excreta

Cow Herd

Precision Map: Panorama Generation

Precision Map : Moisture

Precision Map : pH

FarmBeats can accurately expand coverage by orders of magnitude using a sparse sensor deployment

Weather-Aware Duty Cycling

Weather-Aware Duty Cycling

FarmBeats Duty Cycling

Reduced downtime from 30% to 0% for month long data (September) U

U. U

Day

Summary

- Aerial-based Connectivity (Loon, Aquila) & Agriculture IoT
- Challenges: Power, Control, Communication Range, Bandwidth, Weather
- Opportunities: Duty cycling, sparse sampling, weather prediction, thermodynamics, learning and sensor fusion, Drones
- Farmbeats: End-to-end IoT system for Farming

AgriTera: Accurate Non-Invasive Fruit Ripeness Sensing via Sub-Terahertz Wireless Signals

Sayed Saad Afzal

Atsutse Kludze, Subhajit Karmakar,

Ranveer Chandra, Yasaman Ghasempour

Can we detect the ripeness of fruit beneath its peel non-invasively?

Nearly 50% of the fruits and vegetables produced worldwide are wasted each year

Quantifying fruit ripeness

Quantifying fruit ripeness

How can we measure Brix and Dry-Matter non-invasively and without contact?

Approach : Exploit the sub-THz band to determine Ripeness Metrics

THz Transmitter

THz Receiver

Approach : Exploit the sub-THz band to determine Ripeness Metrics

THz Transmitter

THz Receiver

Approach : Exploit the sub-THz band to determine Ripeness Metrics

THz Transmitter

Changes in refractive-index leave a footprint in the sub-THz band

Wi-Fi

mmWave

sub-THz

AgriTera

• Estimates fruit ripeness metrics such as Brix and Dry-Matter without contact

• Works accurately with different types of fruits with different structures, surface properties, peel thickness and pulp types.

• Implemented and evaluated in practical environments with an average NRMSE error of 0.55%

Key Idea : Exploit the sub-THz band to determine Ripeness Metrics

THz Transmitter

THz Receiver

How can we map sub-THz spectra to Brix and Dry-Matter?

Approach: Chemometric Analysis for Extracting Ripeness Metrics

N Measurements

N Projections

Approach: Chemometric Analysis for Extracting Ripeness Metrics

Implementation

Implementation

Ground Truth

Baseline
AgriTera Ripeness Prediction during Ripening Cycle

Conclusion

- Agri-Tera utilizes the sub-THz band to infer about ripeness metrics of fruits
- It can accurately determine Dry Matter/ Brix for a variety of different types of fruits
- Future work: Enabling a mobile system for fruit sensing using AgriTera

What did we cover today?

Agriculture IoT

- Aerial-based Connectivity (Loon, Aquila)
- Challenges in Agriculture IoT:
 - Internet Connectivity
 - Limited Sensor Placement
 - Power Availability

- IoT for Produce Monitoring and Fruit Sensing

- 1- Project Proposals due today
- 2- Lab 4 due next week, April 8
- 3- PSet 2 due April 10