6.1820/MAS.453: Mobile and Sensor Computing

https://6mobile.github.io/

Lecture #5: Network Connectivity for IoT Systems

Course Staff	Announcements
<u>Lecturers</u> Fadel Adib (<u>fadel@mit.edu</u>) Tara Boroushaki (<u>tarab@mit.edu</u>)	1- Lab 1 due tonight 2- PSet 1 Due March 6
<u>TAs</u> Waleed Akbar (<u>wakbar@mit.edu</u>) Jack Rademacher (<u>jradema@mit.edu</u>)	

Apple debuts iPhone 16e: A powerful new member of the iPhone 16 family

iPhone 16e joins the iPhone 16 lineup, featuring the fast performance of the A18 chip, Apple Intelligence, extraordinary battery life, and a 48MP 2-in-1 camera system — all at an incredible value

G 🗶 🖾 🔗

What are new features (vs iPhone SE)?

A key feature is satellite connectivity. What is it used for?

- messages via satellite when no service
- Emergency SOS
- Roadside assitsance
- Crash detection

What kind of satellites do they use? LEO! (Globalstar network)

Objectives of the Upcoming Three Lectures

Learn the fundamentals, applications, and implications of **IoT network technologies**

- 1. What are the various classes of network technologies? And how do we choose the right technology for a given application?
- 2. What are various routing architectures for wireless networks & IoT systems?
- 3. How does energy impact IoT device design?
- 4. How do batteryless IoT systems work?

NETWORKING: "GLUE" FOR THE IOT

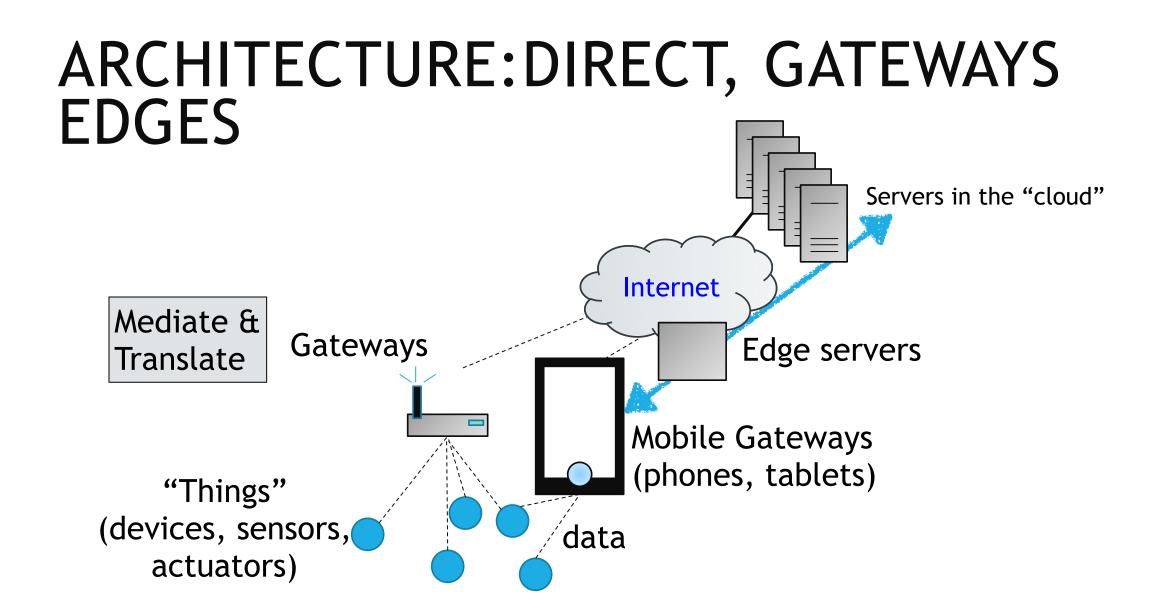
IoT's "technology push" from the convergence of

Embedded computing

Miniaturized sensing (MEMS)

Wireless network connectivity

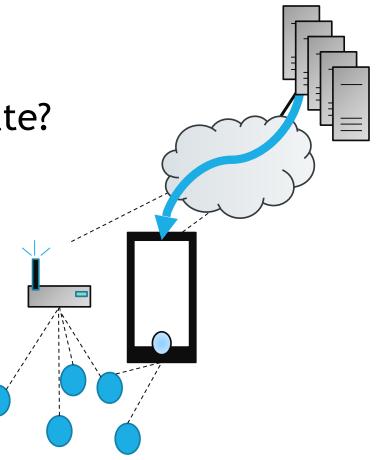
THE IOT CONNECTIVITY SOUP


Where would use use different technologies for? Why not the same technology across use-cases?

NETWORKING: "GLUE" FOR THE IOT

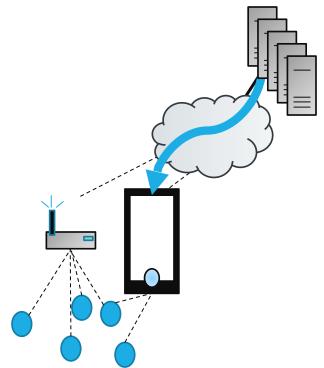
Many different approaches, many different proposed standards. Much confusion

One size does not fit all: best network depends on application


What are the key organizing principles and ideas?

BUT, IN FACT, A RICH DESIGN SPACE

How should gateways and things communicate?


Many answers, many approaches

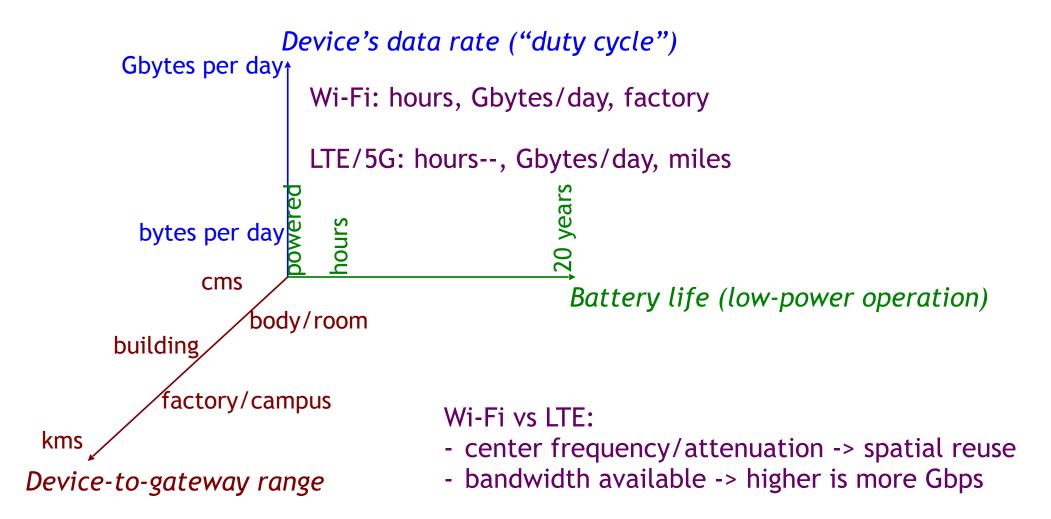
CAN'T WE JUST USE THE WIRELESS INTERNET?

Cellular and Wi-Fi

Yes, we can... except when we can't!

WIRELESS INTERNET FOR IOT?

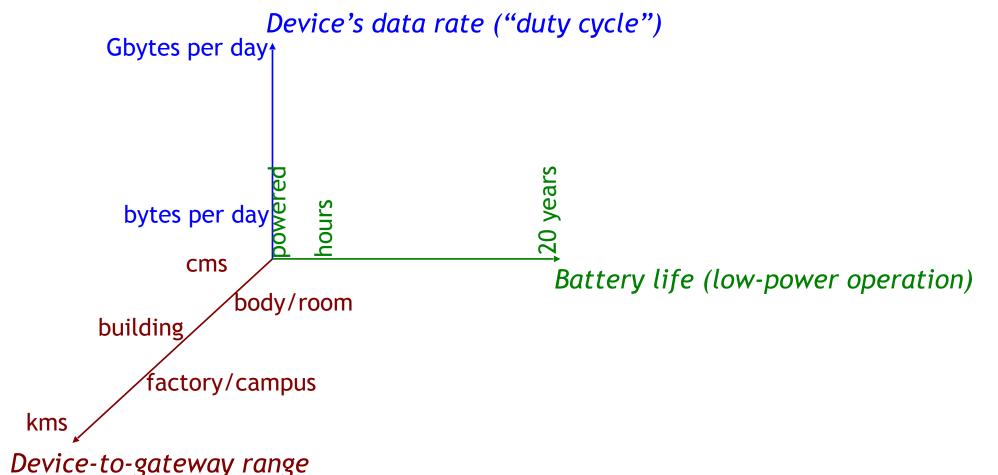
Cellular (5G, LTE/4G, 3G, 2G) and Wi-Fi are + Widely available (cellular in the wide-area and Wi-Fi for static uses) + High bandwidth (for most purposes), so can support high-rate apps


But, each has two big drawbacks

-High power: not ideal for battery-operated scenarios

- -Cellular: often high cost (esp. per byte if usage-per-thing is low)
- -Wi-Fi: OK in most buildings, but not for longer range

Wi-Fi: In-building powered things (speakers, washers, refrigerators, ...) Cellular: High-valued powered things (e.g., "connected car")


IOT NETWORK DESIGN SPACE

WHY SO MANY IOT NETWORKS?

Because engineers love inventing technologies!

Because you can pick from this design space

WHY SO MANY IOT NETWORKS?

- Note, axes aren't independent
- And technology evolves fast
- And bundling into popular devices speeds-up adoption, changing the economics
 - Cf. Wi-Fi \rightarrow laptops (without external cards)
 - Bluetooth classic \rightarrow cell phones \rightarrow wireless headsets
 - Bluetooth Low Energy (BLE) → iPhone then Android smartphones → "body/room" with months-to-years at low duty cycles

BLUETOOTH LOW ENERGY (BLE): "ROOM"-AREA Device's data rate ("duty cycle")

Bluetooth[®]

peak: 2Mbps

Started as "Wibree" by Nokia (2006) Dominant technology today Because of smartphones Smartphones as gateways Wearables, fitness trackers Vehicles (bikes, cars)

Battery life (low-power operation)

body/room 10s of meters typical Bluetooth 5.0+: 100s of meters (up to 800ft) Longer range is not always be good

Months-to-years per day

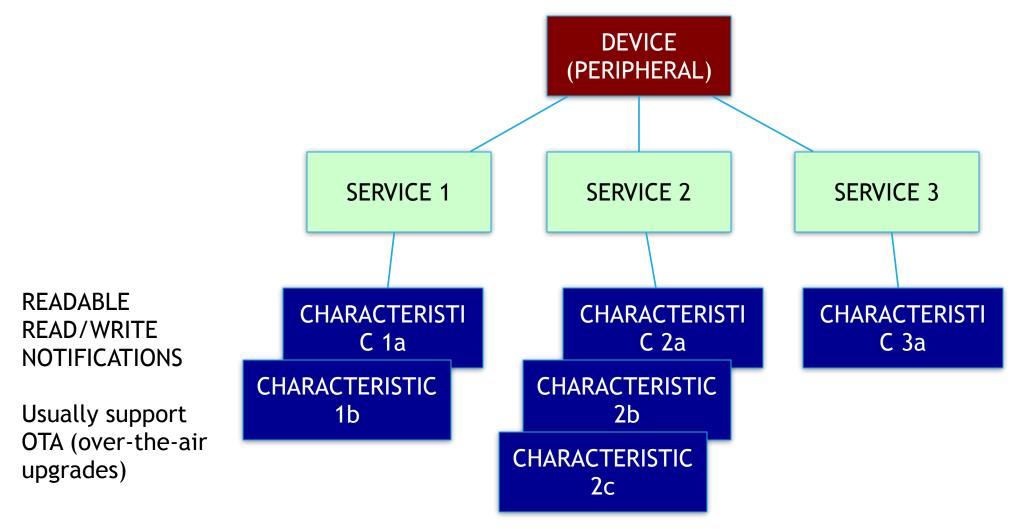
Device-to-gateway range

HOW DOES BLE WORK?

Two parts:

- 1. Advertisements (aka "beaconing") for device discovery
- 2. Connection phase to exchange data

Peripheral: device with data Central: gateway


Should the central or peripheral scan? Why?

BLE ADVERTISEMENTS ARE PERIODIC

Typical period: 100 ms ("iBeacon") Less frequent is fine Triggered advertisements are often a good idea

Trade-off between energy consumed and discovery latency

ON CONNECTION

ON CONNECTION: MAC PROTOCOL

Central orchestrates data communication Key idea: time-schedule to reduce energy consumption

On connect: exchange parameters

- Frequency hopping sequence
- Connection interval, i.e., periodicity of data exchange (T milliseconds)

Every T milliseconds, Central and Peripheral exchange multiple packets, alternating turns

Then Peripheral can go back to sleep until next interval

BATTERY LIFETIME CALCULATION

Consider an IoT system with coin-cell battery-powered nodes Battery: 1000 mAh (milliamp-hours) capacity; 3 Volts Recall that power = voltage * current and energy = power * time So this battery has 3 amp-hour-volts = 3*3600 Joules = 10.8 kJ of energy

Example of BLE current draw: Standby: 1 microAmp (typically in the 1-10 microAmp range) Receive (RX): 3.3 mA Transmit (TX): 4 mA

Suppose device transmits every second: how long does the battery last?

BATTERY CALCULATION (CONT.)

Consider an IoT system with coin-cell batterypowered nodes Battery: 1000 mAh capacity and 3 Volts Recall that power = voltage * current and energy = power * time So this battery has 3 amp-hour-volts = 3*3600 Joules = 10.8 kJ of energy

Example of BLE current draw: Standby: 1 microAmp (typically in the 1-10 microAmp range) Receive (RX): 3.3 mA Transmit (TX): 4 mA Ramping up and down (combined): 1 mA for 5 ms

Suppose device transmits every second: how long does the battery last? Depends on how long the xmit lasts: let's assume 125 bytes at 1 Mbit/s (i.e. 1 ms)

4 mA for	I millisecond		
4 ma for	Why 1 mill	lisecond? @1 Mbit/s	
1 microAmp			

BATTERY CALCULATION (CONT.)

4 milliAm	p for 1 millisecond Why 1 millisecond? 125 bytes @1 Mbit/s	Battery capacity: 1000 mAh (milliAmp-hours) Ramp-up and down: 1 milliAmp for 5 milliseconds
		Energy consumed in 1 second is: (4*0.001 (xmit) + 1*0.005 (ramping) + 1 microAmp (standby)) x 3V = 10 microAmps x 3V
		Therefore, battery lifetime = 1000 mAh / 10 microAmps = 1000 mAh / 0.01 mA = 100,000 hours = 11+ years!
1 microAmp		— Saves energy because it's sleeping most of the time!

Note: 1Watt = 1A x 1V 1Joule = 1Watt x 1s But of course an IoT device also does sensing, some computation, perhaps some storage, etc.

I Used Apple AirTags, Tiles and a GPS Tracker to Watch My Husband's Every Move

A vast location-tracking network is being built around us so we don't lose our keys: One couple's adventures in the consumer tech surveillance state.

By Kashmir Hill and Photographs ByTold Heisler Seb. 11, 2022

mannan and a

eve York City requires to be veccine

"THE IOT GATEWAY PROBLEM"

Application-level gateways prevalent for IoT today Usually need a smartphone app to interact with IoT data/devices Problem: "Siloed" architecture

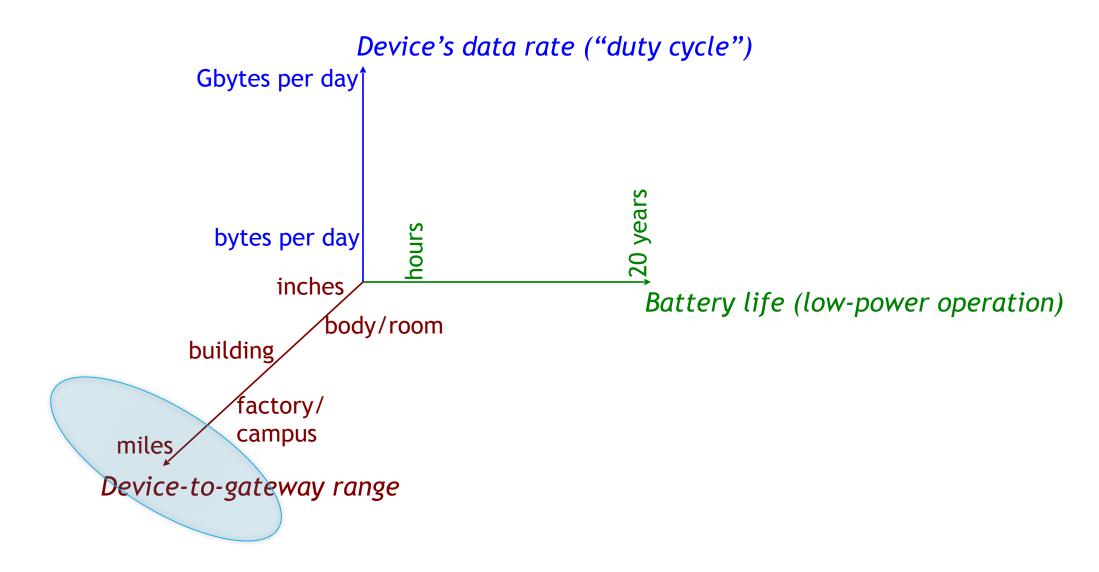
"THE IOT GATEWAY PROBLEM"

Application-level gateways prevalent for IoT today Usually need a smartphone app to interact with IoT data/devices Problem: "Siloed" architecture

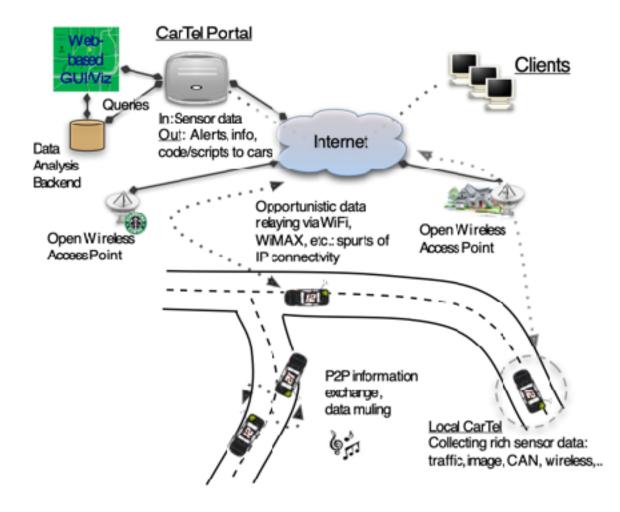
Should smartphones become generic BLE gateways (with OS support) Any phone talking with any peripheral device via BLE

- Should phones become IPv6 routers for peripheral devices?
- Should phone proxy a device's Bluetooth profile to cloud servers?

"THE IOT GATEWAY PROBLEM"


Should smartphones become generic BLE gateways (with OS support) Any phone talking with any peripheral device via BLE

- Should phones become IPv6 routers for peripheral devices?
- Should phone proxy a device's Bluetooth profile to cloud servers?


Is this a good idea? Will it work?

Value is in the data, not connectivity Incentives are a problem For device makers? For app developers? For smartphone users?

EVEN LONGER RANGE (CITY-SCALE)

WHEN THE INTERNET IS MILES AWAY

Use mobile devices as **data mules** Trade-off: delay Delay-tolerant network (DTN)

WHAT IF WE WANT LONG RANGE AND LOW DELAY?

"Long-range IoT networks" Examples: Sigfox, LoRaWAN, cellular IoT proposals (narrowband LTE, etc.), 5G

Some of these are low-power designs (months to years of battery life)

Low or ultra-low throughput (a few bytes per day to achieve long-enough battery life at a rate of a few kbps) Networks like LoRaWAN also include localization capabilities

These have seen growing deployment

WHAT IF WE WANT LONG RANGE AND LOW DELAY

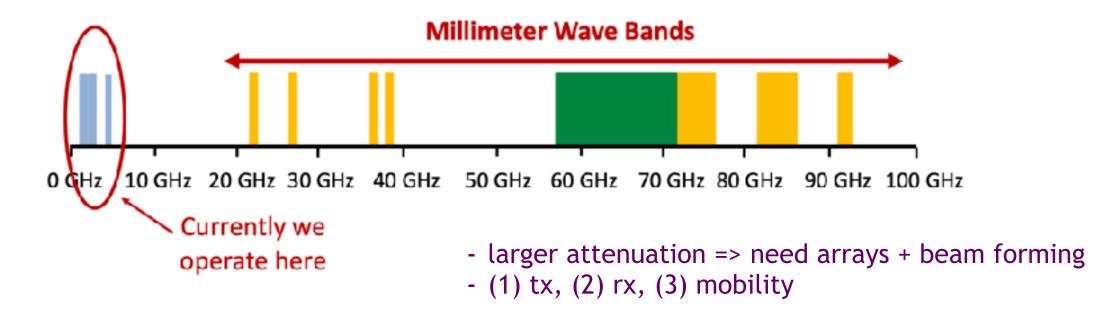
Second choice: Cellular (of course!) Examples: LTE/4G/5G, etc.

High-power consumption, so only when energy isn't an issue Relatively high cost (>\$10 per device today plus monthly usage cost)

Variable delay of cellular networks is still a concern for data-intensive, latency-sensitive applications

WHAT IS 5G? 6G?

"Unifying solution" offered by cellular providers


Usually means:

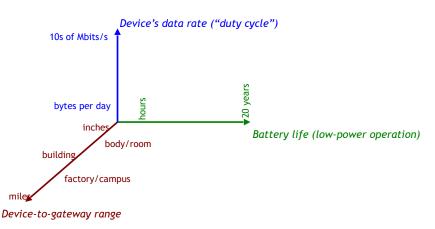
- higher speed
 - no significant difference between LTE & 5G
 - exception is millimeter-waves, which have seen slower adoption
- lower latency
 - e.g., safety critical applications; robotics; AR
- 6G also also joint comms + sensing (localization)

WHAT IS NEW IN 5G?

Millimeter Wave Technology

Huge bandwidth available at millimeter wave frequencies

Millimeter Wave can support data rates of multi-Gbps


WHAT HAVE WE LEARNED?

Rich design space for things-gateway communication

ommunication Servers

Gateways Things Think along three dimensions:

- data rate/duty cycle
- battery
- 3. range

Examples:

- Low-power design (Bluetooth LE): advertisement, timescheduled MAC
- 2. Range extension techniques: muling & meshing (Zigbee, 6LoWPAN) [next lec]
 - Data-intensive IoT: continuous recognition [later in semester]

Objectives of the the Three Lectures Series

Learn the fundamentals, applications, and implications of **IoT connectivity technologies**

- 1. What is the overall IoT system architecture?
- 2. What are the various classes of connectivity technologies? And how do we choose the "right" technology for a given application?
- 3. What are various routing architectures for wireless networks & IoT systems?
- 4. How does energy impact IoT device cesign? And how do batteryless IoT systems work?