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Lecture 10: mmWave Sensing and Self-Driving Cars

Slides adapted from Haitham Hassanieh (EPFL)

Course Staff Announcements
Lecturers
Fadel Adib (fadel@mit.edu) 1- Lab 2 due today
Tara Boroushaki (tarab@mit.edu) 2- Lab3 out today, due next week
TAs 3- Start forming teams
Waleed Akbar (wakbar@mit.edu)
Jack Rademacher (jradema@mit.edu)




What are we learning today?

Learn the fundamentals, applications, and implications of
mmWave Sensing

1- What are the pros and cons of mmWave vs Vision?
2- What is an mmWave radar? How does it work?
3- How does specularity impact mmWave imaging?

4- Can Generative Al help us with mmWave shortcomings?




Today in loT + Self-Driving Cars

March 4, 2025

UC Irvine study shines headlights on
consumer driverless vehicle safety
deficiencies

Project demonstrates the low cost and ease of carrying out ‘sticker attacks’




Millimeter Wave Radars

Obstacle Detection




Non-Line-of-Sight Imaging with
Millimeter Wave Radars
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Challenge: Adverse Weather & Low Visibility

Sandstorm Blizzard Low Lighting Conditions

A

and scenarios where LIDARs and cameras falil.




Non-Line of Sight Imaging with
Millimeter Wave Radars

Operate in Bad Weather Through Occlusions Around Corners

Sandstorm
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Search & Rescue Robots




Challenge: Resolution of millimeter wave radar
IS very low compared to LIDAR and Cameras
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Challenges in Radar Perception

Camera Image Point Cloud
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Challenges in Radar Perception

1. Low Angular Resolution

2. Specularity

3. Multipath

Camera Image

Point Cloud

13



Accurate Bounding Box Detection using Radar

Scene Radar Heatmap

Car silhouette: Ground truth car location
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Cascaded MIMO Radar

Receiver
Array
(16 elements) TI
MIMO Radar

Transmitter
Array
CREEAERS)

Angular resolution of radar is proportional
to antenna array size.
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Virtual Antenna Array
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Virtual Antenna Array
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Virtual Antenna Array

Physical TX Array
Physical RX Array

Time

azimuth resolution

>

-element array
higher than single-chip radars

Location
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High-resolution cascaded MIMO radar suffers from
motion smearing in highly dynamic scenes!

TX  TX antennas take turns...
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Resolving Motion Smearing

Motion Smearing in High-Resolution
Radar Heatmap After Compensation
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Deep Learning

Motion Smearing In High-Resolution Low-Resolution
Radar Heatmap After Compensation Single Transmitter
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Low Resolution
Single Radar

High Resolution
Cascaded Radar

ODbject Detection Network Architecture

Two-Stream FPN Backbone

| Conv.
Polar to Cartesian Conversion

Output _
Region Proposal Network
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Results
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Green: ground truth car location

Scene
Radatron
Cascaded Baseline



Demo Video

No Temporal Post Processing
Frame to frame detection in the range of 25 meters.



Can we go beyond 2D object detection to
full-fledged 3D imaging using radar?



Challenges in Radar Perception

1. Low Angular Resolution Camera Image Point Cloud

2. Specularity

3. Multipath

Cast mmWave Radar Perception as a Learning Problem
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Our Solution

Learning on structures of commonly
found streetside objects.

Generative Adversarial Network (GAN) is effective for
various computer vision tasks: super-resolution, learning image
prior, image style transformation, etc.

38



Conditional Generative Adversarial Network (cGAN)

* Generator takes 3D radar heatmap as input and outputs high resolution depth map.
* Discriminator tries to guess is the high resolution depth map is real or fake.
* Generator’s goal is to fool the discriminator into thinking this is real
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Conditional Generative Adversarial Network (cGAN)

* Train neural networks in Generator and Discriminator to optimize for the GAN loss
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Hawkeye Overview
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HawkEye cGAN
Stereo Camera  Ground Truth .

Depth Map

Recovered
- :;;-a < Depth Map
- . Training Dataset
Millimeter Wave Realistic
Heatmap Radar Data

Synthesizer




Generator Architecture

3D Encoder

1x64x32x96 32x16x48 1x1x1

Per-voxel energy in 3D |
mmWave heatmap

2D Decoder

1024x1x2 = 512x2x4 1x256x128

High-frequency shape
as 2D depth map




Discriminator Architecture

/1x64x32x96 16x32x16x48 2048x1x1x1

mmWave
Heatmap
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HawkEye[CVPR 2020]
High Resolution Through Fog 3D Millimeter Wave Imaging Using cGANS

Training done using simulated data and tested using real data

Imaging Platform

Radar Data __

Synthesizer

Radar Shined Surface
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Trained using simulated data and tested using real data.



What did we cover today?

Learn the fundamentals, applications, and implications of
mmWave Sensing

1- What are the pros and cons of mmWave vs Vision?
2- What is an mmWave radar? How does it work?

3- How does specularity impact mmWave imaging?

4- Can Generative Al help us with mmWave shortcomings?

1- Lab 2 due today
TODO: 2 Lab3 out today, due next week

3- Start forming teams
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